Sampling and Quantization

BMED/ECE 4783
Introduction to Medical Image Processing
Fall 2009

Lecture Outline

- Sampling
- Quantization
- Sampling theorem
- Interpolation

Generating a digital image

Coordinate Convention

Storage Space Requirement
Subsampling

Figure 2.19: A 3024 x 3024 8-bit image subsampled down to 32 x 32 pixels. The number of allowable gray levels was kept at 256.

Gonzalez and Woods, Digital Image Processing

Resampling

Figure 2.20: (a) 1024 x 1024 8-bit image. (b) 128 x 128 image subsampled to 128 x 128 pixels for use as a zoom and down-sampling example. (c) Through (f): 256 x 256, 128 x 128, 64 x 64, and 32 x 32 images interpolated and resampled to 128 x 128 pixels.

Gonzalez and Woods, Digital Image Processing

Varying the Number of Gray Levels

Figure 2.21: (a) Original image. (b) Image enlarged by 1/8 and resampled by 1/8, preserving the original resolution and smoothing the resolution transition.

Gonzalez and Woods, Digital Image Processing

Varying the Number of Gray Levels

Figure 2.22: (a) Original image. (b) Image enlarged by 1/8 and resampled by 1/8, preserving the original resolution and smoothing the resolution transition.

Gonzalez and Woods, Digital Image Processing

Image Interpolation

Figure 2.23: Top row: Images resampled from 128 x 128, 64 x 64, and 32 x 32 pixels to 1024 x 1024 pixels using nearest neighbor gray-level interpolation. Bottom row: Same sequence but using bilinear interpolation.

Gonzalez and Woods, Digital Image Processing

Sampling

• Given a function f(x,y), how many samples per unit area is the “optimum”?
• What is the “optimum”?
• E.g. f(x,y) is a gray level image, i.e. f(x,y) represents the gray level intensity at the location (x,y).
• E.g. if x and y are expressed in millimeters (mm), the corresponding unit area is mm^2. How many samples per mm^2 is the optimum? 5 samples/mm^2 ? 1,000,000,000 samples/mm^2?
Sampling

- An image (function \(f(x,y) \)) is sampled in order to be digitally stored, transmitted, and processed.
- At some point the image has to be reproduced from samples, i.e. converted back to analog form (e.g. to be displayed). This is digital-to-analog conversion (DAC)
- Too few samples \(\Rightarrow \) low quality of the reproduced image
- Too many samples \(\Rightarrow \) too much memory to store the image (i.e. samples), too much time to process the image (samples), too much time to transmit the image (samples)
- Optimal number of samples: the minimal number of samples that allows for exact reconstruction of the image

Band-limited images (2D functions)

An image is band-limited if its spectrum has a bounded region of support, i.e. if

\[
F(u, v) = 0 \quad \text{when} \quad |u| > u_{\text{max}} \quad \text{or} \quad |v| > v_{\text{max}}
\]

\(u_{\text{max}} \) and \(v_{\text{max}} \) are the maximal frequencies present in \(f(x,y) \)

- Real images are band-limited
- Often, the maximal considered frequencies are determined not by the images themselves, but by other factors (e.g. human vision is band-limited; we cannot see details smaller than something)

2D Sampling Theorem

A band-limited function \(f(x,y) \) can be exactly reconstructed from its samples if it is sampled with sampling frequencies \(u' \) and \(v' \) that satisfy the following:

\[
u' > 2u_{\text{max}} \quad \text{and} \quad v' > 2v_{\text{max}}
\]

where \(u_{\text{max}} \) and \(v_{\text{max}} \) are the maximal frequencies present in \(f(x,y) \).

\[
\Delta_x = \frac{1}{u'} \quad \text{and} \quad \Delta_y = \frac{1}{v'}
\]

\(\Delta_x, \Delta_y \) - sampling intervals

Reconstruction from Samples

Goal: given the sampled function \(f_s(x,y) \), reconstruct \(f(x,y) \)

The reconstructed function is denoted by \(f_r(x,y) \)

\[
F_r(u, v) = F_s(u, v)R(u, v)
\]

\[
R(u, v) = \begin{cases}
K, & |u| \leq u_c \text{ and } |v| \leq v_c \\
0, & \text{otherwise}
\end{cases}
\]

\(K \) - scaling constant \(u_c, v_c \) - cutoff frequencies

Reconstruction from Samples

If \(f(x,y) \) is band-limited, the sampling theorem is satisfied, and

\[
u_{\text{max}} \leq u_c \leq u' - u_{\text{max}} \quad \text{and} \quad v_{\text{max}} \leq v_c \leq v' - v_{\text{max}}
\]

then the function is reconstructed exactly, i.e. \(f_r(x,y) = f(x,y) \).

If the reconstruction is not exact, we say that there is aliasing.